Membrane-stabilizing copolymers confer marked protection to dystrophic skeletal muscle in vivo

نویسندگان

  • Evelyne M Houang
  • Karen J Haman
  • Antonio Filareto
  • Rita C Perlingeiro
  • Frank S Bates
  • Dawn A Lowe
  • Joseph M Metzger
چکیده

Duchenne muscular dystrophy (DMD) is a fatal disease of striated muscle deterioration. A unique therapeutic approach for DMD is the use of synthetic membrane stabilizers to protect the fragile dystrophic sarcolemma against contraction-induced mechanical stress. Block copolymer-based membrane stabilizer poloxamer 188 (P188) has been shown to protect the dystrophic myocardium. In comparison, the ability of synthetic membrane stabilizers to protect fragile DMD skeletal muscles has been less clear. Because cardiac and skeletal muscles have distinct structural and functional features, including differences in the mechanism of activation, variance in sarcolemma phospholipid composition, and differences in the magnitude and types of forces generated, we speculated that optimized membrane stabilization could be inherently different. Our objective here is to use principles of pharmacodynamics to evaluate membrane stabilization therapy for DMD skeletal muscles. Results show a dramatic differential effect of membrane stabilization by optimization of pharmacodynamic-guided route of poloxamer delivery. Data show that subcutaneous P188 delivery, but not intravascular or intraperitoneal routes, conferred significant protection to dystrophic limb skeletal muscles undergoing mechanical stress in vivo. In addition, structure-function examination of synthetic membrane stabilizers further underscores the importance of copolymer composition, molecular weight, and dosage in optimization of poloxamer pharmacodynamics in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of contraction-induced injury in the mechanisms of muscle damage in muscular dystrophy.

1. Duchenne muscular dystrophy (DMD) is a severe disease of skeletal muscle, characterized by an X-linked recessive inheritance and a lack of dystrophin in muscle fibres. It is associated with progressive and severe wasting and weakness of nearly all muscles and premature death by cardiorespiratory failure. 2. Studies investigating the susceptibility of dystrophic skeletal muscles to contractio...

متن کامل

Inhibitory Control Over Ca2+ Sparks via Mechanosensitive Channels Is Disrupted in Dystrophin Deficient Muscle but Restored by Mini-Dystrophin Expression

BACKGROUND In dystrophic skeletal muscle, osmotic stimuli somehow relieve inhibitory control of dihydropyridine receptors (DHPR) on spontaneous sarcoplasmic reticulum elementary Ca(2+) release events (ECRE) in high Ca(2+) external environments. Such 'uncontrolled' Ca(2+) sparks were suggested to act as dystrophic signals. They may be related to mechanosensitive pathways but the mechanisms are e...

متن کامل

Reduced necrosis of dystrophic muscle by depletion of host neutrophils, or blocking TNFalpha function with Etanercept in mdx mice.

Necrosis of skeletal muscle fibres in the lethal childhood myopathy Duchenne Muscular Dystrophy results from deficiency of the cell membrane associated protein, dystrophin. We test the hypothesis in dystrophin-deficient mice, that the initial sarcolemmal breakdown resulting from dystrophin deficiency is exacerbated by inflammatory cells, specifically neutrophils, and that cytokines, specificall...

متن کامل

Chronic administration of membrane sealant prevents severe cardiac injury and ventricular dilatation in dystrophic dogs.

Duchenne muscular dystrophy (DMD) is a fatal disease of striated muscle deterioration caused by lack of the cytoskeletal protein dystrophin. Dystrophin deficiency causes muscle membrane instability, skeletal muscle wasting, cardiomyopathy, and heart failure. Advances in palliative respiratory care have increased the incidence of heart disease in DMD patients, for which there is no cure or effec...

متن کامل

Aquaporin 4 Expression in the mdx Mouse Diaphragm

Expression of aquaporin (AQP) 4 in the surface membranes of skeletal myofibers is well established; however, its functional significance is still unknown. The alterations of AQP4 expressions in dystrophic muscles at RNA and protein levels have been reported in various dystrophic muscles such as dystrophinopathy, dysferlinopathy, and sarcoglycanopathy. We are interested in the relationship betwe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2015